Fe-La-P (Iron-Lanthanum-Phosphorus)

V. Raghavan

Recently, Chikhrii et al. [1997Chi] determined isothermal sections for this system at \sim 800 °C for 0-30 at.% La and at \sim 600 °C for 30-70 at.% La.

Binary Systems

The Fe-La phase diagram has no intermediate phases [Massalski2]. A partial phase diagram is known for the Fe-P system [1982Kub]. The intermediate compound Fe₃P forms through a peritectic reaction at 1166 °C between liquid and Fe₂P. Fe₂P forms congruently at 1370 °C. Fe₃P is body-centered tetragonal with the Ni₃P-type structure. Fe₂P has the hexagonal *C*22 structure. The other intermediate phases at higher P contents are FeP (orthorhombic MnP type), FeP₂ [orthorhombic FeS₂ (marcasite) type], and FeP₄ (mono-

clinic). The La-P phase diagram is not known. Four intermediate phases are known: LaP (cubic NaCl type), LaP₂, (monoclinic and orthorhombic forms), LaP₅ (monoclinic) and LaP₇ (monoclinic). See [1997Chi] and [Pearson3] for more details.

Ternary Compounds

Three ternary compounds are known in this system. LaFe₂P₂ (τ_1) has the Al₄Ba type tetragonal structure [1990Ree]. La₂Fe₂₅P₁₂ (τ_2) has orthorhombic symmetry [1994Zim]. LaFe₄P₁₂ (τ_3) has cubic symmetry (space group $Im\bar{3}$) [1977Jei]. Table 1 lists the structural details of these compounds.

Table 1 Fe-La-P Crystal Structure and Lattice Parameter Data

Phase	Composition, at.%	Pearson Symbol	Space Group	Prototype	Lattice Parameter, nm	Reference
LaFe ₂ P ₂	20 La	<i>tI</i> /10	I4/mmm	Al ₄ Ba	a = 0.3838	1990Ree
(τ_1)	40 P				c = 1.1006	
$La_2Fe_{25}P_{12}$	5.1 La	oP78	Pbam	$La_2Fe_{25}P_{12}$	a = 1.4756	1994Zim
(τ_2)	30.8 P				b = 1.8149	
					c = 0.3636	
LaFe ₄ P ₁₂	5.9 La	<i>cI</i> 34	Im3	LaFe ₄ P ₁₂	a = 0.7832	1977Jei
(τ ₃)	70.6 P					

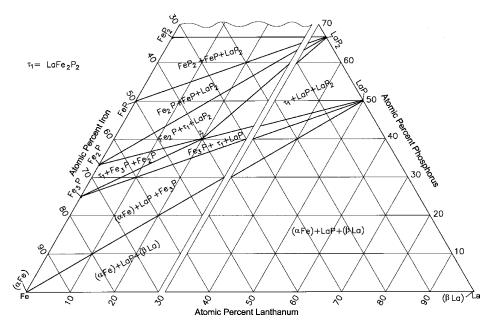


Fig. 1 Fe-La-P isothermal sections at 797 °C (0-30 at.% La) and at 597 °C (30-70 at.% La) [1997Chi]; narrow two-phase regions around tie-triangles are omitted.

Ternary Isothermal Section

With starting materials of purity 99.9% La, 99.99% Fe, and 99.89% P, [1997Chi] prepared 28 alloy compositions. For compositions up to 33.3 at.% P, the alloys were melted in an arc furnace. For higher P contents, the powder mixtures were sintered by slow heating up to 800 °C. The samples were then annealed for 500 h at 1070 K for compositions with \leq 30 at.% La and at 870 K for compositions with 30-70 at.% La and quenched in water. The phase equilibria were studied by x-ray powder diffraction. The isothermal sections determined by [1997Chi] at 797 °C (1070 K) for 0-30 at.% La and at 597 °C (870 K) for 30-70 at.% La are presented as a composite section in Fig. 1. The ternary compound τ_1 is present at 797 °C. The compound τ_2 was not found. The composition of τ_3 falls outside the range investigated by [1997Chi]. No homogeneity ranges were found for the ternary compounds. The third component solubility in the binary compounds is negligible.

References

- 1977 Jei: W. Jeitschko and D. Braun: "LaFe₄P₁₂ with Filled CoAs₃ Type Structure and Isotypic Lanthanoid-Transition Metal Polyphosphides," Acta Crsytallogr., B, 1977, 33B(11), pp. 3401-06.
- **1982Kub:** O. Kubaschewski: "Iron-Phosphorus" in *Iron Binary Phase Diagrams*, Springer-Verlag, Berlin, 1982, pp. 84-86.
- **1990Ree:** M. Reehius and W. Jeitschko: "Structure and Magnetic Properties of the Phosphides $CaCo_2P_2$ and LnT_2P_2 With Th Cr_2Si_2 Structure and LnTP With PbFCl Structure (Ln = Lanthanoid; T = Fe,Co,Ni)," *J. Phys. Chem. Solids*, 1990, *51*(8), pp. 961-68.
- **1994Zim:** B.I. Zimmer and W. Jeitschko: "The Crystal Structure of La₂Fe₂₅P₁₂," Z. Kristallogr., 1994, 209(12), pp. 950-53.
- **1997Chi:** S.I. Chikhrii and O.V. Shevchuk: "Phase Equilibria in the (La,Ce)-Fe-P Systems," *Zhur. Neorg. Khim.*, 1997, 42(8), pp. 1384-86 (in Russian); TR: *Russ. J. Inorg. Chem.*, 1997, 42(8), pp. 1258-60.